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2k + 1 = 4n + 1 or 4n + 3 are useful in fixing the oxygen 
parameters. Here the bismuth and arsenic contri- 
butions are of opposite signs, and the oxygen effect is 
appreciable in many cases, for instance in pairs such 
as 211 (w- ) ,  211 (w); 213 (m), 213 (w) which were 
observed on Weissenberg photographs. 

No attempt was made to determine the oxygen 
parameters directly from :atensities; rather, the in- 
tensity data were used to verify assumptions based on 
predicated atomic distances and configuration. The 
configuration of the arsenate ion is well known to be 
tetrahedral. Since the arsenic atoms lie in fourfold 
inversion axes, the aspect of the tetrahedron is fixed by 
symmetry. I f  reasonable assumptions are made con- 
cerning its size, it is only necessary to rotate the tetra- 
hedron about the axis, and to find the position which 
best agrees with the indicative intensities. The As-O 
distance in the arsenate anion has been reported as 
1.73 A. in YAs04 and as 1.66 A. in BAs04 (Struktur- 
bericht, 3). A value independent of parameter deter- 
minations may be obtained by comparison of the cell 
volumes of arsenates with respect to isomorphous phos- 
phates of the same cation; for instance, A1PO4 and 
AlAs04; BPO 4 and BAsO 4. This indicates that  the 

• arsenate group is about 3.5 % larger than the phosphate 
group. Since the P-O distance in the phosphate group 
has been accurately determined as 1.56 A., the As-O 
distance in the arsenate ion may safely be taken as 1-63 A. 

From these considerations it has been possible to 
derive satisfactory parameters for the oxygen, though 
no high degree of accuracy can be claimed. The results, 
expressed in fractions of the unit cell, are" 

x=0.213, y=0.149, z=0.080. 

Table 1 gives the data for the first half of the powder 
pattern showing the comparison between visually 

estimated intensities and intensity numbers calculated 
on the basis of the proposed structure. These numbers 
(which have been reduced by a convenient factor) were 
obtained from the expression, I-,~ L.P. p F  ~, where L.P. 
is the appropriate Lorentz polarization factor, p is the 
multiplicity and F ~ = A 2 + B z. 

Interatomic distances and structure 

The O-As distances in the arsenate group have been 
assumed to be 1.63 A. For the most reasonable position 
of this group with reference to the bismuth positions, 
the bismuth is found to have a co-ordination ring of 
eight oxygen atoms. Four are at 2.49 A., four others at 
2.59 A. All other oxygen atoms are more than 4 A. 
away. The average oxygen distance to nearest neighbor 
oxygen atoms is 2-85 A., the individual distances being 
2-60, 2.75, 3.02 and 3.02 A. 

Tetragonal bismuth arsenate has the scheelite 
structure (CaWOd). Other crystals which have this 
structure are the periodates of sodium, potassium, 
ammonium and rubidium; the perrhennates of silver, 
sodium, ammonium and rubidium; the molybdates of 
lead, strontium, calcium and barium. No other 
arsenate is known to have this structure. Bismuth 
vanadate is reported to have an orthorhombic cell 
which is of a deformed scheelite type. 

This paper is based on work done under the auspices 
of the Manhattan District at the Metallurgical Labora- 
tory, University of Chicago. 
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A convenient numerical method is developed for evaluating the Fourier transfma-o~u of arbitrary 
functions by the use of Beevers-Lipson strips. A detailed procedure is worked out for the deter- 
ruination of the radial distribution curve of an amorphous material from the X-ray diffraction 
intensity curve, but the method is generally applicable provided that the transformed function 
is continuous and approaches zero sufficiently rapidly. For the purpose considered, strips giving 
values of A sin 2zrnx at intervals of ~ in x to two-figure accuracy and extending up to the 45th 
harmonic are shown to be suitable. The accuracy of the method has been tested by evaluating the 
transforms of the first three odd Hermite functions with satisfactory results. 

Introduction 

In the study of amorphous materials by X-ray dif- 
fraction the experimental data are obtained in the form 

of a curve relating the intensity of diffracted radiation 
to the Bragg angle of diffraction, 0. This can be con- 
verted into a radial distribution function of the electron 
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density in the material by means of a Fourier sine 
transform which is of the form, omitting constant 
multipliers, 

¢(r)= f : f ( s )  ~ 2 n r s d s ,  

where s=(2sinO)/~,  r represents distance in the 
structure, and f(s) is an experimentally determined 
function of s related to the distribution of intensity in 
the diffraction pattern. The method of evaluating this 
transform described in the literature (Katzoff, 1934) is 
to plot graphs off(s) sin 2urs for each value ofr  at which 
it is desired to evaluate ¢(r), and to determine the area 
of each graph either by weighing, counting squares or 
with a planimeter. The construction of the graphs for all 
the values of r required is an'extremely laborious pro- 
cess, and in order to diminish this work the use of a 
Coradi Harmonic Analyser has been suggested, but  
such instruments are neither generally available nor 
ideally adapted to the purpose. More recently a photo- 
electric Fourier transformer has been described (Born, 
1945) which will perform the transformation and present 
the curve of ¢(r) on the screen of a cathode-ray oscillo- 
graph, the data  being inserted in the form of a mask cut 
to the shape of the function f(s). This apparatus is, 
however, unlikely to be available in the average labora- 
tory, and a simple and reasonably rapid method is very 
desirable. 

Similar problems arise in connexion with the response 
of electrical transmission systems to arbi trary input 
signals, and a number of graphical methods adapted to 
this purpose have been described by Cunningham 
(1947). The third method he describes lends itself readily 
to modification into a direct numerical method, using 
strips of the type of those described by Beevers & 
Lipson (1936a, b) and widely used in crystal-structure 
analysis. 

Theoretical 

In  order to obtain a detailed procedure suitable to the 
problem in hand, the following theoretical t reatment  is 
convenient. 

Let 8 = the Bragg angle, 

= wave-length of radiation in A., 

s=(2sin0)/~, 
r = distance within the structure of the specimen 

material in A., 

p(r) = the excess density function in the structure, 

I s = the intensity diffracted at the Bragg angle 8, 

P~ = the polarization factor at this value of 0; 

then it may  be shown tha t  

/8  _- K f /  sin 21rsr dr, 
Ps rp(r) s 

where K is a constant involving the geometry of the 
apparatus and the intensity of the pr imary beam. 

Hence putt ing sls/Ps =f(s),  

we h a v e  f(s)= K f / rp(r) sin2nsr dr. 

In  practice the function rp(r) may be regarded as 
effectively zero for r > some value, say r a. Hence we 
may replace the upper limit of the integral by r a • 

a 

f(s) = K rp(r) sin 21rsr dr. 

Also rp(r)= 0 when r= 0, and is not defined for r < 0. 
Hence rp(r) may be expanded as a Fourier half-range 
sine series which will be uniformly convergent in the 
range 0 ~ r ~ ra, since rp(r) is continuous in this range, 
i.e. 

o o  7 

rp(r)= ]~ Ans inn~- -  (O<r<ra). 
n= 0 ra  

Therefore 

[~ r a oo 

f ( s ) = K J o  n~==oA.sinnTr r--sin27rsr dr 
?'a 

= K A n sin n~ -- sin 27rsr dr 
n = 0  ra 

=½K ~, A,, {cosn(n/r~--2s)r--cosTr(n/ra+2S)r}dr 
~ = 0  

K ~ A |[-rasinTr(n/ra-2S)r r~sin~r(n/ra+2s)rTr" =½ Z . . . . . .  
n= 0 [_ 7r(n -- 2Sra) 7r(n -{- 2Sra) J 0 

Kr  a oo /sinlr(n_2Sra) sinTr(n+2Sra)] 

For integral values of 2st a every term in the summation 
is zero except tha t  for which 2st a = n, and then 

f (~ra) - -  Lt KraAns in~(n-2sra )  
2sr,  --> n 27T ~ - -  2 8 r  a 

= ½ K r  a A n. 

Therefore A,, = 2f(n/2r~)/Kra. 

/Hence the desired function rp(r) may be synthesized 
• ~" 

by summing the series ~ A n s m n ~ - - ,  which we may  
n = 0  ra  

approximate by termination after a suitable number of 
terms. 

Practical details 

In order to establish a satisfactory method it is necessary 
to take account of the following considerations: 

(a) The range of s over which f(s) is observed. 
(b) The number of ordinates on thef(s)  curve which 

are required in order to represent its form satisfactorily. 
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(c) The value of r a beyond which rp(r) m a y  be con- 
sidered essential ly zero. 

(d) The number  of ordinates on the rp(r) curve which 
are required to represent its form satisfactorily. 

Thus, i f  the diffraction pa t te rn  is recorded as far as 
~ = 4 5  °, f(s) will be known over the range 0 < s < 0.92 
for Cu K a  radiation.  Amorphous diffraction pat terns  
are usual ly  diffuse enough for f(s) to be adequate ly  
represented by  ordinates at intervals  of s = 0.02. Then 
if  we adopt  the usual  technique of fit t ing the experi- 
menta l  in tens i ty  curve to the calculated incoherent 
scattering curve at  the m a x i m u m  value of s observed, 
viz. 0"92 in this  case, we shall  have 45 non-zero ordinates. 
The Fourier  series for rp(r) will therefore be te rmina ted  
after the 45th term, and also we have 

1/2ra=O'02. 

Therefore ra = 25 A., 

which is a reasonable value for r a. About  two or three 
points  per /~ngs t rSm uni t  need to be evaluated on the 
rp(r) curve in order to give sufficient cer ta in ty  in 
drawing the curve, and convenient  points at  which to 
sum the series are therefore at intervals  of r/ra = ~6. 

In  view of these considerations a suitable set of 
strips will go up to the 45th harmonic  and  will give 
values of A,,sin(n~r/ra) at intervals  of r/ra=~- 6 in 
circular measure,  i.e. 3 ° . This involves 30 values of each 
strip. Summat ion  of the strips then  gives the desired 
funct ion direct ly from 0 to 12.5 A., and  the portion 
from 12.5 to 25 A. is obtained by  changing the sign of 
the odd harmonics,  i.e. the  even and  odd harmonics  are 
summed separately and added for the first ha l f  of the 
range and subtracted for the second half, writ ing down 
the results in reverse order. 

I t  was expected tha t  strips giving integral  values of 
An from 1 to 99 and  values of An sin (nTrr/ra) to the 
nearest  integer would provide sufficient accuracy, and 
this is confirmed by  the tests described below. As high 
values of A~ never occur for large values of n, since f(s) 
is small  at  large s, the  work involved in preparing the 
strips was reduced by  l imit ing the value of An to 
An = 1 to 50 for n = 17 to 25, An = 1 to 20 for n = 26 to 32, 
and An = 1 to 10 for n = 33 to 45. An was also l imited to 
the  range 1 to 50 for n = 2 to 6. Negat ive values of An 
were not  included, as the ordinates of the f(s) curve are 
always positive. They  would be an  added convenience 
if  i t  were desired to t ransform an assumed structure to 
give a calculated in tens i ty  curve, bu t  this  can always 
be done by  adding separately the terms with positive 
and negat ive coefficients. 

Tests of  the method 

The method was tested by  applying it to the  first three 
odd Hermi te  functions 

¢1(x) = 2 x  exp [ -  ½z2], 

¢8(x) = 4x(2x 2 - 3) exp [ -  ½x2], 

es(x) = 8x(4x 4 -  20x 2 + 15) exp [ -  ½xg], 

which have the proper ty  tha t  apar t  from a constant  
factor they  are identical  with their  respective Fourier  
sine t ransforms (Titchmarsh,  1937, p. 76). The functions 
were calculated, plot ted and t ransformed using 15 
harmonics  only, as the use of the full 45 harmonics  gave 
an undesirable compression in the abscissae of the 
t ransform. The results were then  scaled to agree with 
the original curve at  the peaks. In  Fig. 1 the Hermi te  

+~ 

0F-- -TT--V 
I\ \ / / T h ~ t e  funct,ons (lines) 
I \  y ~ ~ e r  sine transforms 

Fig. I. 

functions are shown by the full lines, and the circles 
show the values obtained for the transforms using the 
strip synthesis. Agreement is within 1-2 ~/o of the peak 
height. Using the full 45 harmonics for the trans- 
formation of ¢i(x), it was found that the errors are 
reduced by about half. The method is therefore quite 
satisfactory for the purpose for which it is developed. 

Thanks  are due to Mr R. D. Swinburn who prepared 
the required set of sine strips and to the Directors of 
Ferodo Limited for permission to publ ish this paper. 
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